首页 资讯 技术 商机 产品 企业 展会 品牌 百科 工程 应用 视频

快速发布求购 登录 注册
行业资讯 行业 财报 市场 标准 研发 新品 会议 盘点 政策 本站速递
全网搜索

软件所在复杂背景下雷达目标检测方面取得进展

研发快讯 2023年04月21日 16:20:33来源:软件研究所 16029
摘要近日,中国科学院软件研究所研究团队在复杂背景下的雷达目标检测方面取得进展。

  【仪表网 研发快讯】近日,中国科学院软件研究所研究团队在复杂背景下的雷达目标检测方面取得进展。相关研究成果以《基于对比学习的航海雷达目标检测方法》为题发表在《电子学报》上。研究针对航海雷达目标检测中背景复杂、原始数据量大、有效数据量少以及检测任务困难等问题,提出了一种全新的基于对比学习的航海雷达目标检测方法CLMRD(Contrastive Learning for Marine Radar Detection)。新方法在航海雷达检测数据集上达到了0.97的准确率和0.95的召回率,显著优于其他传统及智能检测方法,验证了其有效性和鲁棒性。
  航海雷达在复杂场景下的应用面临诸多挑战,传统检测方法的检测率低,性能难以达到要求;基于监督学习的深度学习方法在航海雷达目标检测方面虽然取得了较大研究进展,但目前仍存在两个亟待解决问题:一是基于监督学习的模型高度依赖于数据标注,数据标注的数量和质量直接决定了模型的性能;二是基于有限训练数据的模型鲁棒性差且泛化能力不足,难以应对不断变化的海况和背景。
  针对上述问题,该研究提出了一种基于对比学习的航海雷达目标检测方法CLMRD。该方法通过交替预测和分布对齐的方式,从海量无标签数据中让模型分别从实例和分布级别角度获取特征表示能力,从而训练模型具备分辨杂波和判别目标的能力。研究人员将预训练的特征提取器和目标检测器及后处理阶段数据信息进行融合,得到了良好的航海雷达目标检测结果。同时,为了支持有监督学习和无监督学习训练,该研究还建立了可用于深度学习方法的无标签信息的航海雷达数据集和带有标签信息的航海雷达检测数据集。该方法已在多次航海科考任务中得到应用。
CLMRD算法全阶段过程示意图

我要评论
文明上网,理性发言。(您还可以输入200个字符)

所有评论仅代表网友意见,与本站立场无关。

版权与免责声明
  • 凡本网注明"来源:仪表网"的所有作品,版权均属于仪表网,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:仪表网"。违反上述声明者,本网将追究其相关法律责任。
  • 本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
  • 合作、投稿、转载授权等相关事宜,请联系本网。联系电话:0571-87759945,QQ:1103027433。
今日 换一换
新发产品 更多+

客服热线:0571-87759942

采购热线:0571-87759942

媒体合作:0571-87759945

  • 仪表站APP
  • 微信公众号
  • 仪表网小程序
  • 仪表网抖音号
Copyright anceft.com    All Rights Reserved   法律顾问:浙江天册律师事务所 贾熙明律师   仪表网-仪器仪表行业“互联网+”服务平台
意见反馈
我知道了